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Abstract. Various schemes for high-performance IP address lookups have been 
proposed recently. Pre-computations are usually used by the special designed 
IP address lookup algorithms for better performance in terms of lookup speed 
and memory requirement. However, the disadvantage of the pre-computation 
based schemes is that when a single prefix is added or deleted, the entire data 
structure may need to be rebuilt. Rebuilding the entire data structure seriously 
affects the lookup performance of a backbone router and thus not suitable for 
dynamic routing tables. 

In this paper, we develop a new dynamic routing table algorithm. The 
proposed data structure consists of a collection of balanced binary search trees. 
The search, insertion, and deletion operations can be finished in O(log N) time, 
where N is the number of prefixes in a routing table. Comparing with the best 
existing dynamic routing table algorithm which is PBOB (Prefix Binary tree 
On Binary tree), our experiment results using the realistic routing tables show 
that the proposed scheme performs better than PBOB in terms of lookup 
speed, insertion time, deletion time, and memory requirement. 
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1. Introduction 
To handle gigabit-per-second traffic rates, the current backbone routers must 

be able to forward millions of packets per second at each port. The IP address 
lookup is the most critical task in the router. When a router receives a packet, the 
destination address in the packet’s header is used to lookup the routing table. There 
may be more than one route entries in the routing table that match the destination 
address. Therefore, it may require some comparisons with every route entries to 
determine which one is the longest matching. The longest route from all the 
matched entries is called the longest prefix match (LPM). The IP address lookup 
problem becomes a longest prefix matching problem. 

To design a good IP address lookup scheme, we should consider four key 
aspects: lookup speed, storage requirement, update time and scalability. For any 
scheme, it is hard to perform well in all aspects. The update process is the concern 



of this paper. Currently, the Internet has a peak of a few hundred BGP updates per 
second. Thus, the address lookup schemes with fast update time are desirable to 
avoid routing instabilities. These updates should interfere little with normal address 
lookup operation. 

Various algorithms for high-performance IP address lookup have been 
proposed. In the survey paper [10], a large variety of routing lookup algorithms are 
classified and their complexities of worst case lookup, update, and memory 
references are compared. Despite the intense research that has been conducted in 
recent years, there should be a balance between lookup speed, memory requirement, 
update, and scalability for a good IP address lookup scheme. The pre-computation 
[2], [3], [5], [8], [11] perform a lot of pre-computation and thus improve the 
performance of the lookup speed and memory requirement. However, a 
disadvantage of the pre-computation is that when a single prefix is added or deleted, 
the entire data structure may need to be rebuilt. Rebuilding the routing tables 
seriously affects the update performance of a backbone router. Thus, the schemes 
based on pre-computation are not suitable for dynamic routing tables. On the other 
hand, schemes based on the trie data structure like binary trie, multi-bit trie and 
Patricia trie [9] do not use pre-computation; however, their performances grow 
linearly with the address length, and thus the scalability of these schemes is not 
good when switching to IPv6 or large routing table. 

Although schemes like [4], [6], [12] develop a search tree data structure that is 
suitable for the representation of dynamic routing tables, the complex data structure 
leads to the memory requirement expanded and reduce the performance of lookup. 
Sahni and Kim [4] developed a data structure, called a collection of red-black tree 
(CRBT), that supports three operations for dynamic routing table of N prefixes 
(longest prefix match, prefix insert, prefix delete) in O(log N) time each. In [6], Lu 
and Sahni developed a data structure called BOB (Binary tree On Binary tree) for 
dynamic routing tables. Based on the BOB, data structures PBOB (Prefix BOB) 
and LMPBOB (Longest Matching Prefix BOB) are also proposed for 
highest-priority prefix matching and longest-matching prefix. On practical routing 
tables, LMPBOB and PBOB permit longest prefix matching in O(W) and O(log N), 
where W is 32 for IPv4 or 128 for IPv6. For the insertion and delete operations, 
they both take O(log N) time. Suri et al. [12] have proposed a B-tree data structure 
called multiway range tree. This scheme achieves the optimal lookup time of binary 
search, but also can be updated in logarithmic time when a prefix is inserted or 
deleted. 

In this paper, we develop a data structure based on a collection of independent 
balanced search trees. Unlike the augmented data structures proposed in the 
literature, the proposed scheme can be implemented with any balanced tree 
algorithm without any modification. As a result, the proposed data structure is 
simple and has a better performance than PBOB we compared. 

The rest of the paper is organized as follows. Section 2 presents a simple 
analysis for the routing tables. Section 3 illustrates proposed scheme based on the 
analysis in section 2 and the detailed algorithms. The results of performance 
comparisons using real routing tables are presented in section 4. Finally, a 
concluding remark is given in the last section. 
 



Table 1: Prefix enclosure analysis for three realistic routing tables. 

Database AS6447 AS6447 AS6447 
(year-mouth) (2000-4) (2002-4) (2005-4) 

number of prefixes 79530 124798 163535 
Level-1 prefixes 73891(92.9%) 114745 (91.9%) 150245 (91.9%) 
Level-2 prefixes 4874 (6.1%) 8496 (6.8%) 11135 (6.8%) 

Level-3 prefixes 642 (0.8%) 1290 (1%) 1775 (1.1%) 

Level-4 prefixes 104 (0.1%) 235 (0.2%) 329 (0.2%) 

Level-5 prefixes 17 29 45 

Level-6 prefixes 2 3 6 

 
 

2. Analysis of Covering and Covered Prefixes 
The Border Gateway Protocol (BGP) is the de facto standard inter-domain 

routing protocol in the Internet. BGP provides loop-free inter-domain routing between 
autonomous systems, each consisting of a set of routers that operate under the same 
administration. The address space represented by an advertised BGP prefix may be a 
sub-block of another existing prefix. The former is called a covered prefix and the 
latter a covering prefix. For example, the address block 140.116.82.0/24 is covered by 
another address block 140.116.0.0/16.  

We analyzed three BGP routing tables obtained from [1], and obtained the 
detailed statistics for the enclosure relationship between the covered and covering 
prefixes. Theoretically, one prefix may be covered by at most 31 prefixes for IPv4. 
The prefix and the ones that cover it form a prefix enclosure chain. Therefore, the 
theoretical worse-case enclosure chain size is 32 for IPv4. Contrary to the definition 
in [7], we number the prefixes in a bottom-up manner. For example, if a prefix 
enclosure chain consists of five prefixes Pi for i = 5 to 1, where P5 is the shortest 
prefix that covers the other four prefixes and P1 is the longest one that is covered by 
the other four prefixes. The prefixes like P1 that do not cover any other prefix in the 
routing table are called the level-1 prefixes. The prefixes that only contain level-1 
prefixes are called level-2 prefixes, and so on. Figure 1 shows the enclosure 
relationship between covering and covered prefixes marked with their levels for an 
example routing table that has the enclosure chain size of 5. Our analysis shows that 
the chain size is 6 for all the tables we examined. We further show the number of 
prefixes in each level for all the three routing tables in Table 1. The level-1 prefixes 
account for about 92% ~ 93% of the prefixes in a routing table. The level-2 prefixes 
account for about 6% ~ 7% of the prefixes. The prefixes in other levels only account 
for less than 1% of the total prefixes. Since the prefixes in each level are disjoint, it is 
straightforward to design dynamic routing lookup algorithms with search and update 
complexity of O(log N) for a routing table consisting of N prefixes. 



 
 

3 5 

 
 
3. The Proposed Scheme 

From Figure 1, two important properties of the prefix enclosure relationship can 
be obtained. The first property is that all the prefixes in one level are disjoint. The 
second property is that the prefix containing any one of the level-i prefixes must be 
stored in level-(i+1) or in higher level. Therefore, if we can find a prefix match in 
level-i prefixes, no search is needed in i+1 or higher level. Assume there are at most s 
levels in the routing table. Based on the above two properties, we can build s 
independent data structures for the lookup problem by obeying the tree level 
constraint as follows.  

 
Tree Level Constraint: Based on the enclosure relationship between prefixes, the 
level-i prefixes are stored in the level-i data structure. 
 

Therefore, for a destination address d, if a prefix in the level-1 data structure is 
found to match d, it must be the only matching prefix in the level-1 data structure. 
Moreover, this matching prefix must be the longest prefix match. Other prefixes that 
also match d must be in the higher level data structures. As a result, the higher level 
data structures do not need to be searched. Furthermore, if the level-1 data structure 
does not contain a prefix that matches d, we perform the same search process in the 
level-2 data structure. If a matching prefix is found, it must be the longest prefix 
match. No other higher level data structure needs to be searched. This search process 
continues until the level-s data structure is searched, where s is the maximum number 
of levels. 
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Figure 1: Enclosure relationship between covering and covered prefixes, 

assuming the maximum size of a prefix enclosure chain is 5. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm Search(d, root[], s)  
{ // d is the destination address, s is the number of trees  
01 for ( i = 1 ; i <= s ; i++ ) {  
02  x = root[i]; 
03  while ( x ≠ NULL ) { 
04   if ( x.prefix ⊇ d ) return x.prefix; //A ⊇ B denotes A covers B 
05   else  
06    if ( d < x ) x = x.LeftChild; 
07    else x = x.RightChild; 
08  } //end while 
09 } //end for 
10 return default_prefix 
} 

 
Figure 2: Algorithm to find the longest prefix match. 

 
Algorithm Insert (P, root[], s)
{ // P is the newly added prefix, s is the number of trees 
01 for ( i = 1 ; i <= s ; i++ ) {  
02  x = root[i];  
03  while ( x ≠ NULL ) { 
04   if ( P = x.prefix ) return;  
05   if ( P ⊆ x.prefix ) {   /* x.prefix encloses prefix P */ 
06    Q = x.prefix; x.prefix = P; P = Q; break; } 
07   if ( x.prefix ⊆ P ) break;   
08   if ( P > x.prefix )  
09    if ( x.RightChild = NULL ) { 
10     x.RightChild = Create_A_Node(P); 
11     BST_Balancing(root[i], x.RightChild); return; 
12    } else x = x.RightChild;  
13   else 
14    if ( x.LeftChild = NULL ) { 
15     x.LeftChild = Create_A_Node(P);  
16     BST_Balancing(root[i], x.LeftChild); return; 
17    } else x = x.LeftChild; 
18  } //end while 
19 } //end for 
20 root[++s] = Create_A_Node(P); // The level is increased by one 
} 

 
 

Figure 3: Algorithm to insert a prefix. 
 
 
 



If the enclosure relationship between prefixes is changed because of insertion or 
deletion, the locations of some of the prefixes must also be adjusted in order to follow 
the tree level constraint. In this paper, we decide to use a balanced binary search tree 
to implement each level of prefixes. Other data structures will be considered in the 
future. Since the number of levels is a constant and each level is implemented as a 
balanced binary search tree, the search time complexity must be O(log N) for a 
routing table of N prefixes. Figure 2 shows the search algorithm Search(d, root[], s), 
where parameter d is the destination address and there are s balanced binary search 
trees.  

The insertion of a prefix P is done by performing tree traversals from the level-1 
tree to the level-s tree. The main task when traversing the trees is to check if there 
exists a prefix that covers P or is covered by P. If no such prefix is found, then P is 
disjoint from all the prefixes in the level-1 tree. And thus, P is inserted as a leaf node 
in the level-1 tree. A possible rotation of balanced binary search trees is needed after 
P is inserted. However, if a prefix Q in the level-1 tree is found to cover P, then Q is 
replaced by P and the process of inserting Q in the level-2 tree is performed. If a 
prefix Q is found to be covered by P, the process of inserting P in the level-2 tree is 
performed. In other words, the same insertion process repeats for trees of level-2 to 
level-s, where s is the number of trees before inserting a prefix. If P covers all the 
prefixes in the routing table, a new tree at level s+1 will be generated. 

Figure 3 shows the insertion algorithm Insert(P, root[], s) that inserts a prefix P 
in the balanced binary search trees rooted at root[1..s]. After P is inserted in one of the 
balanced binary search trees, a possible balancing operation (function 
BST_Balancing()) must be performed.  

The deletion process of deleting a prefix D first finds out which tree contains D 
among s balanced binary search trees, assume D is in the level-i tree. There may be a 
prefix Q that covers D in the level-(i+1) tree. If prefix D is the only prefix that is 
covered by Q in the level-i tree, then the tree level constraint will be violated after 
deleting D from the level-i tree. Therefore, in this case, prefix Q must be moved from 
the level-(i+1) tree and inserted into the level-i tree (i.e., use Q to replace D). The 
violation of tree level constraint may cause a chain effect to higher level trees. On the 
other hand, if prefix D is not the only prefix covered by Q in the level-i tree, then 
anything other than deleting prefix D is not required.  

The process of checking whether or not prefix D is the only prefix covered by 
prefix Q may have a strong impact on the overall process time for deletion. Therefore, 
we propose an efficient scheme to minimize the time taken for this process. This 
scheme only checks if prefix Q covers the prefixes Y and Z that are the smallest prefix 
in D’s right subtree and the largest prefix in D’s left subtree, respectively. To explain 
why we don’t need to examine other prefix, it is sufficient to consider Y only as 
follows. If there is another prefix U that is also covered by prefix Q, then Q must also 
cover Y because Y locates between D and U. One may argue that the faster way to 
know if there exists another prefix that is also covered by Q in the level-i tree is to 
examine the prefixes on the path from the node associated D to the node associated Y 
one-by-one while traversing the tree and stop as soon as we find another prefix is 
covered by Q. But we should know that even we find a prefix T covered by Q earlier 
than reaching the node associated Y, the node associated with prefix Y still needs to be 
visited because Y can be used to replace D. Therefore, the best way is directly go to 



the node associated with Y from the node associated with D and checking if Y is 
covered by Q. Also notice that it is possible that Q is at level-k for k ≥ i+2 (i.e., no 
prefixes in the level-m tree cover D, m = i+1 to k-1). In this case, there must be a 
prefix enclosure chain for D consisting of a prefix in each level-j for j = k to i. Thus, 
prefix Q must remain in the level-k tree because of the prefix enclosure chain for D.  

Figure 4 shows the details of the deletion algorithm. The while loop search for 
the prefix D in each tree rooted at root[i] for i = 1 to s. When a node x associated with 
D is found in level-i tree, the function Search_a_Tree_for_Enclosure(root[i+1], D) as 
shown in line 5 is performed to find a prefix Q that contains D in the level-(i+1) tree. 
If such Q does not exist, we delete node x from the level-i tree directly by using the 
standard balanced binary search tree deletion algorithm as shown in line 6. As 
explained above, we don’t worry about if a prefix containing prefix D exists in the 
higher level tree than i. Lines 7-17 take care when a prefix Q that contains D exists in 
the level-(i+1) tree. If the right subtree of node x is not empty, it must exist a node y 
which is the x’s successor. Otherwise, x’s successor is the node already visited and 
recorded in line 21. If y exists and y.prefix is contained in Q, we replace x with y and 
delete node y directly, as shown in lines 10-11. Similar operations are done for the 
largest prefix in the left subtree of node x. 

 
Algorithm Delete(D, root[], s)
{ // y and z are the successor and predecessor of node x containing prefix D 
01 for ( i = 1 ; i ≤ s ; i++ ) {  
02 x = root[i]; y = z = NULL; 
03 while ( x ≠ NULL ) { 
04 if ( x.prefix = D ) { 
05 q = Search_a_Tree_for_Enclosure(root[i+1], D); 
06 if ( q = NULL ) { BST_Delete(root[i], x); return; } 
07 else { 
08 if ( x.RightChild ≠ NULL ) y = Smallest_Prefix(x.RightChild); 
09 if ( y ≠ NULL and q.prefix ⊇ y.prefix ) { 
10 x.prefix = y.prefix; 
11 BST_Delete(root[i], y); return; } 
12 if ( x.LeftChild ≠ NULL ) z = Largest_Prefix(x.LeftChild); 
13 if ( z ≠ NULL and q.prefix ⊇ z.prefix ) { 
14 x.prefix = z.prefix; 
15 BST_Delete(root[i], z); return; } 
16   x.prefix = q.prefix; D = q.prefix; break;  
17 } 
18  } 
19 if ( D ⊃ x.prefix ) break; // D contains x.prefix and break inner loop 
20 if ( D ⊂ x.prefix ) return; // D does not exist 
21 if ( D < x ) { y = x; x = x.LeftChild; } 
22 else { z = x; x = x.RightChild; } 
23 } //end while 
24 } //end for 
}  

Figure 4: Algorithm to delete a prefix. 



4. Performance Evaluations 
In this section, we present the performance results for IPv4 routing tables. Three 

BGP tables of different sizes obtained from [1] are used in our experiments. These 
BGP routing tables reflect the realistic sizes of the routing tables in the backbone 
routers currently deployed on the Internet. We compare the proposed algorithm with 
the prefix binary tree on the binary tree structure (PBOB) [6]. We only choose PBOB 
for comparisons because other schemes [4], [12] do not perform better than PBOB. 
The performance experiments are implemented in C language on a Linux Redhat 
platform with a 2.4G Pentium IV processor containing 8KB L1, 256KB L2 caches 
and 768MB main memory. Moreover, GNU gcc-3.2.2 compiler with optimization 
level –O4 is used. 

Table 2 (a) shows the amount of memory used by each of the tested schemes. We 
can see that the proposed scheme uses about 15% less memory than the PBOB 
structure. This result can be attributed to that the node structure of our scheme is 
much simpler than that of PBOB. Besides, each node of the PBOB structure is 
associated a prefix set, and less than 1% of these prefix sets are empty. For every 
PBOB nodes that associate the non-empty prefix sets, it needs additional memory to 
store these non-empty prefix sets (each non-empty prefix set is constructed by an 
array structure with six entries). To measure the lookup times, we first use an array A 
to store the address parts of all prefixes in a routing table and then randomize them to 
obtain the input query address sequence. The time required to determine all the LPMs 
is measured and averaged over the number of addresses in A. The experiment is 
repeated 100 times, and the mean of these average times is computed. These mean 
times are reported in Table 2 (b). Although the worst case search time may be worse 
than that in PBOB because all the balanced binary trees must be searched, the average 
time is better than PBOB. This is because most of the search result can be determined 
in the level-1 tree. For the average update (insert/delete) time, we start by randomly 
selecting 5% of the prefixes from the routing tables. The remaining prefixes are used 
to build the desired data structures (PBOB and the proposed balanced binary search 
trees). After the desired data structure is constructed, the 5% selected prefixes are 
inserted into the structure one by one. Once the selected prefixes are all already 
inserted, we proceed to remove them from the constructed structure one by one. The 
total elapsed insertion and deletion times are averaged to get the average insertion and 
deletion times. This experiment is also repeated 100 times and the mean of the 
average times is reported in Table 2 (c) and (d). The deletion times for PBOB are 
obtained by the implementation with the optimized version of the deletion algorithm 
proposed in [6]. In other words, the empty nodes in PBOB are not removed if they 
have two children nodes. However, in the proposed scheme, we implement the 
complete deletion procedure such that as long as a prefix is deleted, the corresponding 
node in one of the balanced trees is removed and the required rotations are also 
performed. Even with this implementation difference, the deletion time of the 
proposed scheme still performs better than PBOB. 
 
5. Conclusions 

We have developed a dynamic routing table data structure based on the prefix 
enclosure relationship structure. For currently available backbone routing tables, at 
most six independent balanced binary search trees are needed. Since the level-1 tree 



and the level-2 tree account for 97%-99% prefixes in the routing table, the average 
performance of the lookup, insertion, and deletion times are very well. Since the 
number of the balanced tree is constant, the search, insertion, and deletion operations 
can be finished in O(log N) time, where N is the number of prefixes. Our experiment 
results show that the proposed scheme performs better than PBOB, the best dynamic 
routing table algorithm, in terms of lookup speed, insertion time, deletion time, and 
memory requirement. 
 
 
 

Table 2: Performance statistics. 

(a) Memory requirements (KB) 

AS6447 AS6447 AS6447 schemes (79,560) (124,824) (163,574) 
PBOB 1,525 2,374 3,101 

Proposed scheme 1,330 2,087 2,734 

(b) Average search time (microseconds) 

AS6447 AS6447 AS6447 schemes (79,560) (124,824) (163,574) 

PBOB 1.02 1.37 1.57 
Proposed scheme 0.65 0.79 0.88 

(c) Average insertion time (microseconds) 

AS6447 AS6447 AS6447 schemes (79,560) (124,824) (163,574) 
PBOB 0.90 0.89 1.01 

Proposed scheme 0.71 0.75 0.76 

(d) Average deletion time (microseconds) 

AS6447 AS6447 AS6447 schemes (79,560) (124,824) (163,574) 
PBOB 0.57 0.57 0.64 

Proposed scheme 0.47 0.48 0.49 
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